
\

What Is vi?

The command-line text editor vi (short for “visual interface”) is a standard utility on

Unix/Linux, and it comes pre-installed on Unix. It contains multiple modes, the basic ones

being: Command mode (the default mode; unless otherwise specified, the commands in this

cheat sheet apply to this mode), Insert mode, and Visual mode.

This vi editor cheat sheet contains specific commands for various functions, and all

commands are case-sensitive (capital letter command = Shift + original letter key).

Some Unix/Linux distributions use vi as an alias for vim, another command-line text editor

which is an improvement on vi in that it has productivity-enhancing features, such as

window-splitting and tabs, code highlighting, macros, multiple-time undo’s and redo’s,

command-line history, pattern matching, and word completion.

Pro tip: To execute a vi command multiple times, prefix the command with a positive

integer. For example, if you want to delete 100 lines, type “100dd” in Command mode.

Basic Navigation

This section covers opening vi; moving the cursor around; jumping to the start or end of a

word, line, paragraph, and file; and searching for text patterns. The <Return> key featured in

some vi commands below is the same as the <Enter> key on some keyboards. <Ctrl> is the

Ctrl key, and <Escape/ESC> is the Escape key. Other instances of < and > are literal.

Here are some helpful commands for entering/using vi on the command line:

Terminal command Explanation

vi Cheat Sheet

\

vi filename.txt Open a new or existing file called
filename.txt

vi -r filename.txt Recover a file called filename.txt that
someone was editing when the operating
system crashed

view filename.txt Display read-only filename.txt
cat filename.txt Output contents of filename.txt; suitable for

small files
less filename.txt Output contents of filename.txt; suitable for

large files; navigate using arrow keys

On some distributions, such as macOS, you may use the arrow keys to move the cursor left-

, right-, up-, and downwards in the default Command mode. However, on other Unix/Linux

distributions, using the arrow keys might yield one of A, B, C, and D, so you still need to

learn the following direction commands:

Direction command Explanation
h Move cursor leftwards by one character
j Move cursor downwards by one line
k Move cursor upwards by one line
l Move cursor rightwards by one character
12h Move cursor leftwards by 12 characters
23j Move cursor downwards by 23 lines
34k Move cursor upwards by 34 lines
45l Move cursor rightwards by 45 characters
100j Move cursor downwards by 100 lines

Use the following directional commands to jump to the beginning or end of a word (a string

of alphanumeric characters excluding spaces and punctuation), line, paragraph, or file:

Command Explanation
b Move cursor to the beginning of the current

word
w Move cursor to the beginning of the next

word
e Move cursor to the end of the current word
B Move cursor to the beginning of the

previous word before a whitespace
W Move cursor to the beginning of the next

word after a whitespace
E Move to the end of the current word before

a whitespace
0 Move cursor to the first character in the

current line
^ Move cursor to the beginning of the current

line
$ Move cursor to the final character in the

current line
gg Go to the first line in the document
`` Go to your last position in the file
+ Move cursor to beginning of next line
- Move cursor to beginning of previous line

\

<Ctrl>d Scroll down one-half screen
<Ctrl>u Scroll up one-half screen
<Ctrl>f Scroll forward one full screen
<Ctrl>b Scroll backward one full screen
) Move cursor to the next sentence
(Move cursor to the previous sentence
{ Move backward by one paragraph
} Move forward by one paragraph
H Move to the top line of the screen
M Move to the middle line of the screen
L Move to the last line of the screen
% Move to matching bracket: () [] {}

:0<Return> Move cursor to the first line in the document
1G Move cursor to the first line in the document
:n<Return> Move cursor to the n-th line, where n is a

positive integer, in the document e.g.,
:10<Return> moves the cursor to the

tenth line
nG Move cursor to the n-th line, where n is a

positive integer, in the document e.g., 5G

moves the cursor to the fifth line
G Go to the final line in the document

A tricky part of mastering vi is searching for patterns and replacing them where needed. The

following table lists the relevant search-and-replace vi commands:

Command Explanation
/ Anything you type after this symbol

becomes a pattern you want to find
forwards/downwards in the file.

? Anything you type after this symbol
becomes a pattern you want to find
backwards/upwards in the file.

/^string Find the pattern string matching the

beginning of a line
/string$ Find the pattern string matching the end

of a line
n Find the next occurrence of the pattern

typed after /

N Find the previous occurrence of the pattern
typed after ?

f<char> Find a character <char> (such as “a”, “0”,

…) on the same line, moving forwards till
the end of the line

F<char> Find a character <char> (such as “a”, “0”,

…) on the same line, moving backwards till
the beginning of the line

; Repeat the previous character search in the
same direction

:s/foo/bar/ig Replace all occurrences of “foo” with “bar”

in the current line; “i” means “case-

insensitive” and “g” stands for “global”

\

:1,$s/foo/bar Replace an occurrence of “foo” with “bar”

from the first line to the last line
:11,22s/foo/bar/gI Replace all occurrences of “foo” with “bar”

from the 11th line to the 22nd line; “g”

stands for “global” and “I” means “case-

sensitive”
:^,.s/foo/bar/g Replace all occurrences of “foo” with “bar”

from the beginning of the file to the current
cursor position

:%s/foo/bar Replace an occurrence of “foo” with “bar”

in the document
:%s/foo/bar/g Replace all occurrences of “foo” with “bar”

in the document; “g” stands for “global”

:%s/foo/bar/c Replace all occurrences of “foo” with “bar”

in the document; “c” means vi will show a

prompt to confirm each replacement (“Y” to
confirm)

:& Repeat the last replacement command
/\<pro\> Search for the word pro (and not for

proper, produce, etc.)

/l[aei]nd Search for land, lend, and lind

Editing Text

Here, we cover Insert mode, the deletion, modification, and repetition of text, and undoing

and redoing actions.

Insert mode is where you edit the text contents of a file. Once in Insert Mode, the word

“INSERT” will appear along the bottom edge of the terminal. The following table shows

several ways to enter Insert mode in vi:

Command to enter Insert mode Explanation
i Inserts text before the current cursor

location
a Inserts text after the current cursor location
o Creates a new line for text entry below the

cursor location
I Inserts text at the beginning of the current

line
A Inserts text at the end of the current line
O Creates a new line for text entry above the

cursor location

The following commands help you delete content and enter Insert mode at the same time:

Command Explanation
cc Remove the contents of the current line.

Afterward, vi remains in Insert mode.

\

C Remove the contents of the current line.
Afterward, vi remains in Insert mode.

cw Remove the word indicated by the cursor.
Afterward, vi remains in Insert mode.

c11w Remove 11 words starting from the one
indicated by the cursor. Afterward, vi
remains in Insert mode.

12cc Remove 12 lines starting from the one
indicated by the cursor. Afterward, vi
remains in Insert mode.

c20c Remove 20 lines starting from the one
indicated by the cursor. Afterward, vi
remains in Insert mode.

s Remove the current character. Afterward, vi
remains in Insert mode.

S Deletes the current line. Afterward, vi
remains in Insert mode.

When you’ve finished modifying the text, use the following command to stop inadvertently

editing your file:

Command to exit Explanation
<Escape/ESC> Exit Insert mode

Remember the following commands if you want to delete one or more characters, words,

lines, or paragraphs:

Command Explanation
x Delete the character highlighted by the

cursor
X Delete the character before the cursor

location
dd Delete the line the cursor is on
dw Deletes from the current cursor location to

the next word
dW Delete a blank-delimited word and the

following space
d} Delete all characters to the end of the

paragraph
:5,30d Delete lines 5–30
3x Delete three characters starting from the

one indicated by the cursor
d9w Delete nine words starting from the one

indicated by the cursor
12dd Delete 12 lines starting from the one

indicated by the cursor
d20d Delete 20 lines starting from the one

indicated by the cursor
d^ Delete from the current cursor position to

the beginning of the line
d$ Delete from the current cursor position to

the end of the line

\

D Delete from the cursor position to the end of
the current line

dG Delete from the current line to the end of
the file

The commands listed below are for changing characters/words/lines, repeating them, and

undoing changes:

Command Explanation
u Undo previous action; repeat as often as is

necessary
U Undo all changes to the current line
. Redo the last command once
<Ctrl>r Redo the last command once
n. Redo the last command n times, where n is

a positive integer
J Join next line to the current line
xp Switch the positions of two adjacent

characters
ddp Swap two adjacent lines
:15,16 co 17 Copy lines 15–16 to after line 17
:18,20 m $ Move lines 18–20 to the end of the file
:7,300 d Copy lines 7–300 to the buffer and delete

them from the document

Visual Mode

The Visual mode in vi is for highlighting and selecting text. In this special mode, you can be

precise in actions such as cutting, copying, pasting, making uppercase/lowercase, and

replacing words.

Three Visual modes exist:

● visual character mode,

● visual line mode, and

● visual block mode.

Command to enter Visual mode Explanation
v Enter visual character mode; afterward, use

the navigation keys to highlight text.

Once in this mode, the word “VISUAL” will
appear along the bottom edge of the
terminal.

\

V Enter visual line mode, highlighting the

entire line on which the cursor is.

Once in this mode, the word “VISUAL LINE”
will appear along the bottom edge of the
terminal.

<Ctrl>v Enter visual block mode, making text

selections by blocks. Moving the cursor will
make rectangle selections of the text.

Once in this mode, the word “VISUAL
BLOCK” will appear along the bottom edge
of the terminal.

Once in any of these modes, you can highlight the desired text using arrow keys or the

navigation commands in vi. Afterward, you can delete, copy, paste, and manipulate the text

wherever the cursor is using the following commands:

Command Explanation
yy Copy (y = yank to buffer) the current line

indicated by the cursor

\

40yy Copy 40 lines into the buffer, starting from
the current line indicated by the cursor

yw Copy the current word from the character
the cursor is on to the end of the word

:15,20y Copy lines 15–20
p Paste the copied text after the cursor
:put<Return> Put (paste) the copied text after the cursor
P Paste the copied text before the cursor
yyp Repeat the current line
ywP Repeat the copied word
r Replace the character highlighted by the

cursor
R Overwrite multiple characters beginning

with the character currently under the
cursor; stop replacing with <Escape/ESC>

~ Change the alphabetical character under
the cursor between uppercase and
lowercase

> Increase indentation of all lines
< Decrease indentation of all lines

Any copied/yanked content goes into one of 26 temporary memory receptacles in the vi

editor called text buffers. They persist until you copy or delete more characters into it or until

you quit your current vi session. The name of each text buffer is a letter of the English

alphabet, so their names are a through z.

Here are some vi commands to manipulate vi text buffers:

Command Explanation
"ayy Copy the current line into buffer a

"Ayy Append the current line to buffer a
"add Delete the current line and put text in buffer

a

"ap Paste the line from buffer a below the

current line
"a100yy Copy 100 lines into buffer a

"a100dd Copy 100 lines of text into buffer a and

delete them from the document

The vi editor allows you to use abbreviations to replace words. After typing the abbreviation,

you expand an abbreviation when you hit <Space> or <Return>. Abbreviations can be a life-

saver as you can define common typos as demonstrated by the examples below:

Command Explanation
:ab os operating system Expand every newly typed instance of “os”

into “operating system”
:abbreviate sig your@email.com Expand every newly typed instance of “sig”

into “your@email.com”
:ab teh the Auto-correct “the” typo
:ab adn and Auto-correct “and” typo
:ab taht that Auto-correct “that” typo

\

:iab tihs this Only auto-correct “this” typo in Insert mode
:cab hoeewvr however Only auto-correct “however” typo in

Command mode
:abc Clear all abbreviations
:abclear Clear all abbreviations
:una os Remove the abbreviation related to “os”
<Ctrl>v Prevent an abbreviation you’re entering at

the moment from expanding
<CR> This string of four characters represents the

new line character when constructing an
abbreviation in Insert mode. “CR” stands for
“carriage return.”

You can type similar special characters,
such as <tab> to input a tab and <esc> to

represent the <Escape> character.

When you’ve finished your work in Visual mode, press the Escape key twice:

Command Explanation
<Escape/ESC><Escape/ESC> Exit Visual mode

Command Mode

Command mode is the default mode you see when you enter vi. This section covers saving

files, quitting the vi editor, showing and hiding line numbers, and running shell commands

from inside vi.

Command Explanation
ZZ Save (if there are changes) and quit
:w<Return> Save (write) to the file named in the original

vi execution
:q<Return> Quit (exit the vi console); this will only work

if you’ve made no changes
:wq<Return> Save and quit
:q!<Return> Quit without saving
:w newfilename.txt<Return> Save to newfilename.txt

:w>>extrafile.txt<Return> Append the current file to a file named
extrafile.txt

:w!<Return> Overwrite the contents of vi to the file
named in the original vi execution

:w! newfilename.txt<Return> Overwrite the contents of vi to
newfilename.txt

:23,45w snippet.txt<Return> Write the contents of the lines numbered 23
through 45 to a new file named
snippet.txt

:23,45w>>snippet.txt<Return> Append the contents of the lines numbered
23 through 45 to a new file named
snippet.txt

\

:r filename.txt<Return> Read a file named filename.txt and

insert its contents after the cursor in the
currently opened file

:h<Return> Get help on vi (exit it with :q)

:set nu<Return> Display line numbers
:set nonu<Return> Hide line numbers
<Ctrl>g Show the current line number and the total

number of lines in the file at the bottom of
the screen

:.= Return the line number where the cursor is
at the bottom of the screen

:= Return the total number of lines in the
document at the bottom of the screen

:!<shell_command><Return> Run a <shell_command>

:!ls<Return> Run the ls (list items in current working

directory) command from vi

Advanced Features

This part will cover regular expressions, customization of the vi interface, macros, and

splitting the vi editor into multiple windows/screens.

The vi editor admits regular expressions as search strings.

Regular expression Denote Character class
(where applicable)

^ The beginning of the line: use at the
beginning of a search pattern.

/

. Any single character except new line /
* Zero or more of the previous character /
$ The end of the line: use at the end of the

search pattern.
/

[The beginning of a set of matching or
non-matching search patterns

/

] The end of a set of matching or non-
matching search patterns

/

\< The beginning of a word in a search
pattern

/

\> The end of a word in a search pattern /
\s whitespace character <Space>, <Tab>
\S non-whitespace character All characters except

<Space> and <Tab>
\d digit [0-9]

\D non-digit [^0-9]

\x hex digit [0-9A-Fa-f]

\X non-hex digit [^0-9A-Fa-f]

\o octal digit [0-7]

\O non-octal digit [^0-7]

\h head of word character [A-Za-z_]

\

\H non-head of word character [^A-Za-z_]

\p printable character [-~]

\P printable character, excluding digits (?![0-9])[-~]

\w word character [0-9A-Za-z_]

\W non-word character [^0-9A-Za-z_]

\a alphabetic character [A-Za-z]

\A non-alphabetic character [^A-Za-z]

\l lowercase character [a-z]

\L non-lowercase character [^a-z]

\u uppercase character [A-Z]

\U non-uppercase character [^A-Z]

To configure the look and feel of your vi editor, use the following commands:

Command Explanation
:colorscheme <Ctrl>d Show a list of available vi color schemes
:colo blue Change to vi’s color scheme named “blue”:

This article contains additional commands on setting your vi color scheme.

A vi macro is a feature that allows you to record a sequence of commands for performing a

certain task. Multiple executions of that macro will repeat the same task in an automated

fashion.

Macro command Explanation
q<register><command(s)>q The syntax for recording a macro.

Examples below.
qao<ESC>q Record a basic macro that inserts a new

line (o) and save it to register a

:reg View saved macros

@a Replay the macro saved in register a

5@a Execute the macro saved in register a on

five more lines

You can also split your vi editor screen into multiple windows:

Command Explanation
<Ctrl>ws Split the screen horizontally

https://phoenixnap.com/kb/vim-color-schemes
http://cc.etsii.ull.es/ftp/antiguo/PRGPAR1/unix/docs/vi.macros.htm

\

<Ctrl>wv Split the screen vertically

<Ctrl>ww Navigate between horizontal/vertical split
screens

<ESC>:q Exit one of the split screens

For advanced screen splits, refer to our tmux cheat sheet.

The following commands help you configure the settings for your vi user experience:

Setting command Explanation
:set ic<Return> Ignore the case when searching

:set ai<Return> Set auto indent
:set noai<Return> Unset auto indent
:set nu<Return> Display lines with line numbers on the left

side
:set sw = n<Return> Set the shift width of a software tabstop to a

length of n, where n is a positive integer

:set sw = 4<Return> Set a shift width of four characters
:set ws<Return> Allow your pattern searches to loop around
:set wm = 0<Return> Turn off wrap margin
:set wm = n<Return> Set the wrap margin from the right edge of

the screen as the specified number of
characters n, where n is a positive integer

:set wm = 2<Return> Set the wrap margin to two characters
:set ro<Return> Change file type to “read only”
:set term<Return> Print terminal type
:set bf<Return> Discard control characters from input
:set all<Return> View a list of all settings and their current

values
:set all&<Return> Reset all settings to their default values

Conclusion

We hope this vi cheat sheet makes you a more confident user of vi commands and helps

you complete your work more efficiently. Remember to check out our courses on Unix/Linux

shell programming and articles on IT Fundamentals to fill in any proficiency gaps you have in

Unix/Linux.

https://www.stationx.net/tmux-cheat-sheet/
https://courses.stationx.net/courses?query=linux
https://courses.stationx.net/courses?query=linux
https://www.stationx.net/category/it-fundamentals/

